
"_ Cr

c

J

IIIIII...................... IIIIIIII _ IIIIIIIIIIIIIII.................. tull ...............





NASA Contractor Report 4147

Turbofan Forced Mixer

Lobe Flow Modeling

lll--Application to Augment Engines

T. Barber, G. C. Moore,

and J. R. Blatt

United Technologies Corporation

Pratt & Whitney Engineering Division

East Hartford, Connecticut

Prepared for

Lewis Research Center

under Contract NAS3-23039

National Aeronautics
and Space Administration

Scientific and Technical
Information Division

1988





FOREWORD

The overall objective of this NASA program has been to develop and

implement several computer programs suitable for the design of lobe
forced mixer nozzles. The approach consisted of extending and
existing analytical nacelle analysis to handle two stream flows where
one of the streams is at a higher energy. Initially the calculation
was set up to handle a round, free mixer including satisfying the
Kutta condition at the trailing edge of the mixer. Once developed and
calibrated, the same analysis was extended to handle periodic
boundary conditions associated with typical engine forced mixers. The
extended analysis was applied to several mixer lobe shapes to predict
the downstream vorticity generated by different lobe shapes. Data was
taken in a simplified planar mixer model tunnel to calibrate and
evaluate the analysis. Any discrepancies between measured secondary
flows emanating downstream of the lobes and predicted vorticity by

the analysis is fully reviewed and explained. The lobe analysis are
combined with an existing 3D viscous calculation to help assess and

explain measured lobed data.

The program also investigated technology required to design forced
mixer geometries for augmentor engines that can provide both the
stealth and performance requirements of future strategic aircraft.
For this purpose, UTC's available mixer background was used to design
several preliminary mixer concepts for application in a exhaust

system. Based on preliminary performance estimates using available
correlations, two mixer configurations will be selected for further

testing and analysis.

The results of the program are summarized in three volumes, all under

the global title, "Turbofan Forced Mixer Lobe Flow Modeling". The
first volume is entitled "Part I - Experimental and Analytical
Assessment" summarizes the basic analysis and experiment results as
well as focuses on the physics of the lobe flow field construed form

each phase. The second volume is entitled "Part II - Three
Dimensional Inviscid Mixer Analysis (FLOMIX)". The third and last
volume is entitled "Part III - Application to Augmentor Engines"
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I. INTRODUCTION AND SUMMARY

Future gas turbine engines for military tactical fighter applications are

expected to require a moderate engine bypass ratio cycle (BPR) (0.6 to 1.2)

that will operate with very high primary combustor exit temperature.

Anticipated missions include long subsonic cruise legs as well as augmented

supersonic dash capability. An advanced augmentor compatible with this type of

engine cycle and emission will require low nonaugmented (dry) thrust specific

fuel consumption (TSFC), dependable augmentor ignition, stable operation in

the upper left-hand corner (ULHC) of the flight envelope, high core stream

temperature accommodation, and h_gh combustion efficiency within the confines

of a short afterburning length. The use of enhanced survivability features is

also an important consideration in the augmentor design.

Military engines frequently need large quantities of thrust for short periods

of time to aid in takeoff or combat capability. The addition of an augmentor

to an engine can provide such thrust increases but at the penalty of increased

duct length and engine weight. The added mixing length, many times that of a

non-augmented engine, is needed for increased residence time to complete the

combustion process. The addition of a forced mixer to augmentor is an

effective means for obtaining increasing mixing efficiencies without the added

duct penalties. The mixing in current augmented engines (without forced

mixers) is in the 50 to 70 percent range. Addition of a mixer could bring

this figure up to the 90 percent range and thus provide an increased dry

thrust and "TSFC" Furthermore, while augmentors in turbofan engines can

suffer from rumble and acoustic interaction between the combustion process and

the engine geometry due to burning conditions in the cold gas stream,

incorporation of a mixer provides a method of sitting the flameholders in a

hot gas environment and thereby improves the rumble characteristics of the

augmentor.

In the current NASA contract two augmentor concepts have been indentified as

having features attractive to military engines"

o SWIXER (Swlrl-MIxer) Augmentor

o Mixer Flameholder Augmentor

The SWIXER augmentor concept uses variable swirl vanes at the discharge of a

convoluted, forced mixer to _mprove nonaugmented TSFC through enhanced mixing.

It also has the advantage of accelerated burning rate (which yields short duct

length and weight) of a swirl augmentor. The SWIXER system consists of an

annular pilot burner at the outer diameter of the combustible gas mixture,
with variable vanes incorporated in the mixer to swirl the exit flow providing

enhanced flame propagation by increased turbulence and bouyancy forces.

Conceptual design studies indicate that the SWIXER augmentor shows a gain in

mission range due to low-pressure loss along with high combustion efficiency.

Less percent mixing was determined for this concept because of the amount of

fan airflow used with the outer diameter (OD) pilot, which enters the

augmentor in an axial d_rection. The resultant percent mixing is predicted to

be lower for a confluent flow system.



The flamehoIder mixer auqmentor concept uses a convoluted, forced mixer in
series with a bluff body'f]ame stabilizer. Through improved mixing with
low-pressure loss, the mixer f]amehoIder augmentor addresses the primary
mission/cycle requirement of low nonaugmented TSFC. Augmented performance is
comparable to that of a state-of-the-art bluff body stabilized augmentor. The
flameholder mixer system consists of V-gutter f]ameho]ders being used as flame
ignition sources incorporated within the mixer. Conceptual design studies
Indicate that the mixer flameho]der augmentor has the largest gain in mission

range due to its predicted high percent mixing and lowest weight. Table I

provides a summary of predicted performance and design features for these twoaugmentor concepts.

Augmentor

Concept

Swirl-Mixer

(Swixer)

Flameholder Mixer

TABLE I

AUGMENTOR CONCEPT SUMMARY

Advantaqes

o Good Dry Mixing

o Low Dry Pressure Loss

o Short Burning Length

o ULHC Stability

o High Dry Mixing

o Short Burning Length

o ULHC Stability

o No Variable Geometry
o Low Weight

Disadvantages

o Complex
o Heavier

o Higher Dry Pressure Loss

The current NASA contract considers two different designs for each augmentor

concept. The design were tailored for installation on a JTISD-4 engine,

already available for possible full scale testing of potentially attractive

designs. One candidate design for each augmentor concept was selected for more

complete aerodynamic design efforts, resulting in planar equivalent models for

detailed experimental testing. The proviso requiring the use of the JTISD-4 as
a design engine Introduced some difficulties. While the bypass ratio is in

the desired range for a subsonic bomber appIicatlon, the engine is currently
operated as a non-mixed flow engine- that Is the fan and core flows exitthrough individual

nozzles with flow through the nozzle at the sea level static takeoff point

that was used as a aerothermaI design point. Augmentors require variable area

nozzles to operate w|thout affecting the gas generator operation and work best

when these nozzles are choked. In order to simulate these effects, it was

assumed for thrust caIcuIations that the engine was operating in an altitude

stand with 14.7 psla at the inlet and 9.0 psia at the nozzle. This actually
represents a flight point of approximately 13,000 feet at 0.87 Mach number.
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II. DESIGNOF MIXERSFORAUGMENTORENGINES

For several years empirical design systems, based on available data, have been
used to assist in the design of mixed flow nacelles. These systems typically
consisted of correlations relating total pressure loss and mixing
characteristics to key geometrical parameters. These correlations however
rarely consider the actual flow path and its aerodynamic history. Mixer
performance has been largely attributed to the following geometrical
correlating parameters"

Percent Mixing

Mixing length - L_/R_.,.

Penetration . A.r,_._y/Aoo=,

# Lobe s

"Excess" Pressure Loss

Turning Rate - L_/h

Penetration

# Lobes

Lobe Aspect Ratio ~ X/h

These geometrical parameters are defined using the nomenclature shown in

Figure l, with Lm referring to the length of the mixer from its cross-over
location to the lobe exit plane and Rm referring to a mean radius for the

mixer lobe. The term "excess" pressure loss refers to those viscous

contributions beyond that of an attached boundary layer, i.e. base region

losses, separation, etc.

I MIXING PI..ANE

T

Figure 1 Mixer Performance Parameter Nomenclature
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A. Baseline SWIXER

Design Description

The baseline swixer, as shown in Figure 2, utilizes a very deep penetration

mixer with ]4 lobes. Variable swirl vanes are located in the center of the

cold chutes. The vanes are contoured so as to minimize pressure loss while in

the axial flow configuration and yet maintain attached flow when turned at 25

degrees to swirl the flow. A pilot is provided to initiate combustion in the

flow, but a cooling liner must be used to maintain the case and nozzle

temperatures within acceptable limits. Fuel injection is provided by spraybars
in both the hot and cold flows. The fuel is injected in a radially zoned
configuration from the OD towards the ID with each successive zone.

The taiIcone has an extension past the plane of the reactant ignition. The

base of the swixer vane is mounted into the taiIcone and the bearing surface

for the pivoting pin is inside the tailcone being cooled by fan air. The
swirl vanes pivot at the trailing edge of the mixer.

I
I

SIDE VIEW

BASELINE MIXER (14 LOBESI

AND PLUG

END VIEW

Figure 2 Preliminary Design Views of Baseline Design SWIXER No. I
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Rationals in conventional augmentor cooling liner
wlxer was designed us g .... _., ...._ Deeo mixer penetratlon

The baseline s ...._ _I_ t innitlon ze_,-,_. _..... _^. ,M._
,orh,_lnav and proven sw1,,_/_ _ .?_, ....o_ _nlv in the cola cnu_ -.... L

..... _ioved bv placement o ne s ..... _ _^ malntain a constant flow area

forcing the cold chute area to be en_arg_u Lv
the trailing edge of the mixer where the static balance plane _s located.
Placement of the vanes in the cold chute also reduced the dry pressure loss of

the vane by sitting _t in the lower velocity flow. The vane will transmit

less heat to the bearing surface and, thus, provide longer life and more

tellable operation by positioning in the cold stream.

The pilot has been placed at the outer diameter of the burning flows for

several reasons"

a) To take advantage of the buoyancy forces In existence when a hot

compressible fluid is located at the OD of a swirling flow

b) To avoid interference with the trailing edge vortices of the mixer.

c) To shorten the required fuel llnes and provide For low blockage

mounting the pilot apparatus

d) To site it in an area with excellent cooling airflow since it will be

operating with Flows at approximately stoichlometric conditions.

Spraybar fuel injection is provided because of the use of a mixer. Although

sprayringS are, in many respects, a superior method of fuel injection when
used with a swirl augmentation system (the zoning l_nes up with the annular

zone requirements of the OD piloted system and they are of lighter weight than

spraybar system due to the absence of circumferentially manifolding on the OD

of the case), the many penetrations of the mixer geometry required by a

circumferential sprayring render Its assembly and maintenance very difficult.

The use of spraybars minimizes mixer penetrations and, since the spraybars are

oriented radially, provides for removal for maintenance or replacement without

interference from the m_xer.

Zoning is provided by the use of multiple bars in any one chute. The bars are
of varying lengths and have fuel injection orlflcl at different radius. Fuel
is directed toward the outer radius in both the hot and cold Flows flrst in

the area adjacent to the pilot.

B. Advanced SWIXER

Oeslqn Oescrlptlon

The advanced swIxer, shown in Figure 3, utillzes a six Iobe design with the

variable angle swirl vanes in the center of the cold chutes, as was done in

the baseline. The surface of the mixer incorporates a multiple of slots

oriented to capture air from the fan stream and inject it |nto the core
stream. A swirl pllot is incorporated to provide ignition capabllity at low

fan stream temperatures. Fuel injection spraybars are located in the mixer
walls and are sequenced to provide annular zones starting at the pilot radius

and progressing inward. The tralllng edge of the mixer chutes are parallel to

the swirl vanes rather than radial.

S



,Rationale

Figure 3

/:NO VIEW

Preliminary Design Views of "Gilled" Design SWIXER No. 2

The design goal of this concept was to maximize the mixing of the fan and core

streams while reducing the pressure loss and the tendency for separation in

the mixer chutes. The gilled SNIXER concept is an attempt to do both. The

incorporation of slots In the mixer surface Introduces fan air to the hotter

core alr before the trailing edge of the mixer is encountered. The presence

of the mixer Increases the contact area between the hot and cold streams

relative to that achievable with a circular splitter plane. Incremented slot

injection acts to prevent separation on either slde of the mixer surface by

drawing the boundary layer from the fan slde of the mixer and injecting it
into the lower energy boundary layer on the core side surface.

The fuel injection spraybars are located in the mixer walls to reduce pressure

drop. The swirl vanes are placed in the fan chutes to reduce the pressure

loss and provide for lower temperatures at the _w_vable interfaces. The

Lamalloy tail cone provides another source of cold air to enhance the mixing
characteristics of the augmentor through a porous surface.

The mixer has been reduced to a six lobe design due to the quantity of air

being injected into the core chute. A larger number of fan mixing chutes

would increase the airflow to the core side and reduce the flow area of the

fan chute to a level where either chute penetration wouTd suffer or too severe

a narrowing of the chute at the swirl vane station would adversely affect theflow over the vanes.
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C. Candidate SWIXERAerodynamic Design

The alternate approach taken in the advanced SWIXERconfiguration is to more
aggressively promote core flow/fan flow mixing by adding a series of cold
chutes along the lobed surface. This so called "gilled" design is shown in
Figure 3. The basic concept is patterned after the single slot approach used
by Sokhey & Farquhar (Ref. l) of The Boeing Company. Their approach, which
used a simple slot normal to the crest line of the lobe to enhance the mixing
process, incurred a performance penalty. For a swixer mission however this
penalty need not be a relevant mission parameter. Additionally, a porous plug
of lamalloy is included to further bleed cold air into the core flow. The
baseline JTISD SWIXERconfiguration needs to be redesigned to reflect the
different mass flow splits. Considering the scope of this program and the
intent of using the selected SWIXERdesign for analytical studies, it was
jointly agreed that the baseline SWIXERbe approved for more detailed
aerodynamic design and subsequent fabrication and testing.

SWIXER Aerodynamic Design

Two design exercises were conducted to define the baseline SWIXER

configuration. A first pass, SLTO design point configuration was generated by

defining the swixer augmentor components and their airflow requirements and

integrating them with the Baseline SWIXER. The augmentor components include a

pilot, swirl vanes, and spray bars. A second pass design exercise was
conducted for the purpose of reoptimizing the mixer shape relative to the

augmentor components, and for the purpose of reducing the possibility of flow

separation in the fan passage. A comparison of the first pass SNIXER and
revised SNIXER configuration are shown in Figure 4. The following changes were

made to the first pass design"

l) The mixer lobe penetration and turning rate were reoptimized relative

to the new mixing duct geometry required by the augmentor components.

2) The mixing plane areas were resized to be compatible with the airflow

requirements of the pilot and the swirl vane blockage.

3) The number of lobes was reduced from 14 to 12 to accommodate the swirl

vanes.

4) The fan valley angle was reduced from 22 degrees to 17 degrees.

5) The plug contour was redefined.

6) The outer diameter of the fan duct upstream of the mixer was reduced.

A comparison of design characterization for improved SWIXER design and the
Baseline SWIXER is shown in Table II.
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TABLE II

DESIGN CHARACTERISTIC COMPARISON

SNIXER NO. I AND SWIXER FINAL

No. of Lobes

Mixing Length

(LTp/D) T/P Dia.

(L_./D) Pilot Dia.

Penetration

Relative to T/P

Relative to Pilot

Scallops

Scarf Angle

Lobe Sidewall Contour

Primary Flow Path

Fan Flow Path

Mixing Duct

Overall Mixing Turning Rate (Lm/H)

Primary Turning Rate ( R/ )

Fan Valley Angle

Gap Size (A:Ap/ApRL)

Gap Height (H_Ap/2*F=)

Approx. Displacement ThicKness
Ratio in Fan Valley (*R=)

Aspect Ratio

14

1.25

NIA

77%
N/A

None

0 °

Radial Walls

Constant Area

Accelerating

Constant Area

1.579

0.245

22 °

12_

0.46

0.67

O. 305

Swixer

Final

12

1.096

1.25

64%

88_

None

0°

Radial Walls

Constant Area

Accelerating

Diffusion-Constant Area

1.830

0.246

17°

II.9%

0.32

0.90

0.285
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An improved SWIXER configuration was designed using the same design criteria

used for the Baseline SWIXER (reference). The mixer optimization process was

conducted by defining a virtual flow path bounded on the outside by the pilot

and a slip line extending rearward from the pilot. This approach assumes that

mixing between the fan and primary flow passing through the mixer is dominated

by the mixer and that the mixing process between the pilot flow and mixer flow

is dominated by the SNIXER design. Performance trades between estimated mixing
gains and pressure loss penalties were conducted for the system within this

envelope with the aid of in-house mixer performance correlations. This

resulted in the selection of a new mixer configuration with higher penetration
and longer length than the baseline. This configuration is estimated to

produce a high leve] of mixing (87.6% within the virtual flow path) with a

tailpipe length (27.I77 inches) that is not expected to be longer than

required by the SWIXER components. The mixer penetration relative to the pilot

was increased from 77% to 88% and from 56% to 64% relative to the tailpipe.

The new mixer is 2 inches longer. Generally, higher penetration mixers are

longer in length because of a performance trade between increasing mixing
gains and increasing turning losses.

The mixer exit areas were resized to account for swirl vane blockage and

reduced fan flow through the mixer lobes. The intent is to cause the component

operating characteristics of the JTISD-4 to remain essentially unchanged if

the engine is operated at SLTO with the SWIXER. The fan flow through the mixer

lobes is reduced relative to the baseline mixer because the pilot flow and

cooling flow (20% of the fan flow at SLTO) bypass the mixer. The swirl vanes

are estimated to effectively block 37.915 sq. inches of the fan lobe area at

the mixing plane. The vanes are approximately 0.5 in. wide at the mixer exit

and are curved in the region of the mixer exit even in the streamlinedposition.

The mixing plane Mach number and mixing potential within the virtual stream

tube are essentially unchanged from the Baseline Mixer. Also, as with the

Baseline Mixer, there is an accelerating fan flow path and constant area

primary flow path as shown in Figure 5. In order to maintain the constant area
primary flow path and the required mixing areas a new plug contour wasdefined.

The first SWIXER configuration was judged to be susceptible to flow separation

in the fan valleys due to the narrow channels produced by the swirl vanes and

a strong diffusing region in the fan passage upstream of the mixer. To reduce

this problem, the channel width was increased by reducing the number of lobes

from 14 to 12, and the local flow turning was reduced by decreasing the fan

valley angle from 22 to 17 degrees. In addition, the outer diameter of the fan

duct upstream of the mixer was reduced to decrease the local diffusion in the

mixer entrance duct and to provide a more energetic boundary layer flow in the

fan valleys. Reducing the outer diameter of the entrance duct also reduces the

possibility of low separation in a region on the duct outer wal] aft of theMC2 flange.

10
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The estimated ratio of dlsplacement thickness to channel haIf-wldth in the Fan

lobes at the mixer exit ( 8"/ Z/2H = .90) exceeds the design criteria that was

imposed on the baseline mixer ( 8"/ Z/2H = .68). The degree to which this

design criteria was exceeded was minimized by reducing the diffusion rate in

the Fan duct upstream of the mixer to the extent that was possible without

seriously compromising the augmentor Flow path provided. Note, that the

dlspIacement thickness parameter is not intended to be a direct indication of

when flow separation might occur. It has been used as a device to limit the

design selection, whenever possible, to the range of design parameters
reflected in our data base.

D. Baseline Flameholder Mixer

Description

The baseline flameholder mixer design, as shown in Figure 6, is a straight

forward approach to the problem of combining mixer and augmentor

technologies. Using accepted design practice from each field, a low risk

design can be obtained.

FAN SPRAY LINER

PR! SPRAY -- RA___R
$ COOLING

/ / Ftow

BAR

i SPRAY .AR _ II ___j

4622 64.00

SlOE VIEW
END VIEW

Figure 6 Preliminary Design Views of Base]ine Flameholder Mixer

The base]ine design uses a 32 lobe mixer (16 core and 16 fan lobes) with a

V-gutter FlamehoIder inset into the core stream. The Flameholder serves to

initiate combustion in the bulk of the gas stream flowing past. The

flameholder has 16 OD V-gutters and 8 ID V-gutters attached to a

circumferential]y V-gutter pi]ot. The tips of the OD gutters contact the

mixer. The walls of the hot chutes of the mixer are not radia], but are

para]leI to the enclosed radial Flameholder. A similar mixer design was

previously studied in full scale tests by Cu]Iom and Johnsen (Ref. 2).

12



Fuel injection is provided by radial spraybars located in the center of each

mixer chute. Fuel is injected in zones. The first zone provides fuel to the

circumferential pilot ring for ignition and flame propagation to the radial

gutters. The next zone to receive fuel is that containing the OD gutters.

Only the core chutes receive fuel in this zone as the chutes contain the
flameholders. The effect of the mixer is to flatten the augmentor exit

temperature profile by increasing the mixing of unfueled fan air into the
burdened core air, thus increasing thrust in the augmented mode. The third

zone is that covered by the ID gutters. The final zone is fuel injected into

the fan chutes. Because there is no flameholding device incorporated into the

fan chutes, ignition is provided by the plane present in the core chutes.

This reduces the rumble potential of the design by eliminating a recirculation

volume in the cold stream in which the vaporization and energy release

processes could interact with pressure pulsation.

A cooling liner is used approximately one inch from the ID of the case. The

outer diameter of the mixer is approximately 0.7 inches from the ID of the

cooling liner. The air for the cooling liner is picked up ahead of the static

pressure balance plane and diffused. The cooling liner extends back to the

exhaust nozzle.

The tailcone starts at the turbine exhaust case at 3.9 inch radius, expands to

4.4 inch radius then tapers to 1.8 inch radius where it is truncated. The

taiIcone forms the inner wall of a canted diffuser.

Rationale

The number of lobes is determined primarily from augmentor efficiency

considerations. The major driver in the geometric effect on efficiency is the

separation between the flameholders since this determines the point of closure

of the flame front. The length and diameter then determines the flame

residence time. Combustion in this design is a two step process l) an

aerodynamic induced ignition of a streamtube and 2) non-luminous chemical
reactions occuring downstream. The ignition and initial heat release takes

place in the luminous flame front. The initial heat release is estimated at

50 percent of the total heat release. The chemical reactions and eddy mixing

downstream of the luminous flame front add the remaining 50 percent of the

heat release.

The positioning of the flameholders in the center of the hot chutes provides
for increased flameholder stability, but it dictates the number of chutes due

to the interaction between augmentor efficiency and flameholder number.

Sixteen hot chutes require sixteen cold chutes.

E. Alternate Flameholder Mixer

Design Description

The alternate flameholder mixer design, as shown in Figure 7, attempts to

increase the penetration of the cold chutes by distributing some of the

blockage into the cold chute instead of concentrating all of it in the hot

chutes. The method used was to design the flameholders into the trailing edge

of the mixer.

13
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Figure 7 Preliminary Design Views of Alternate FIamehoider Mixer

Fourteen radia] flameholders are used. They are not attached to the mixer, to

avoid therma] stresses, but are floating within the hot chutes. The mixer is

designed to conform to the shape of the flameholder so that the wake contains

both hot and cold stream gases. The f]ameholder is cooled by backside

convection of the core stream gases. This serves to draw off the heat

transferred From the flameholder wake to the flamehoIder and recircuIate i;

into the wake. Due to the containment of both core and fan stream gas

mixtures, the stability potential of this device is lower than that of the

baseline flamehoIder mixer. Because the flight profile for this s_udy only
uses augmentation during takeoff and initial climb, the augmentor pressures
are high enough to preclude stability problems.

To reduce the pressure loss In the system, the fuel spraybars are placed in

the mixer sidewalls. Each spraybar wIII feed both a hot, vitiated flow and a
cold, non-vitlated flow stream necessitating different orifice numbers and
sizes on either slde of the spraybar due to the variance in fue]

requirements. Un]ike the baseline flameholder mixer design, which zoned the

flamehoIders circumferentiaIly with the hot stream being fueled before the

cold stream, this concept will be fueled radially. The fact that the F/H wake
is composed of flow from both streams makes it essential that combustible

mixtures be present in both streams or a blowout may occur. Although

separately controlled spraybars for the hot and cold streams would be designed
if a sizeab]e BRP excursion would take place over the operating envelope, for

the narrow operational envelope contemplated it will be just as effe.ctive and
less complex to use just one spraybar set For each annular zone.

No augmentor cooling liner is shown in this design. The case is instead

protected by an insulating therma] blanket attached to the inner surface.

14



Rationale

This conceptual design attempts to improve on the operational characteristics

of this system through use of some novel concepts. The major innovative

concepts are the removal of the cooling liner and substitution of an internal

insulating blanket directly on the duct wall, the placement of the

flameholders in line with the mixer walls and the incorporation of the radial

spraybars in the mixer walls.

No augmentor cooling liner is shown. To improve mixing efficiency and

pressure loss characteristics at cruise, the liner was eliminated and replaced

with insulating material attached to the inside surface of the case. A

portion of the air near the case will not be burned during augmentation to

provide a buffer layer for the nozzle. The augmentor operation time will be
limited by the thermal transients in the case and nozzle. Because the

augmentor in subsonic bomber applications is only used for takeoff and for

flush time requirements, acceptable life should be attainable. Studies of

military bomber engine requirements in the past have shown no requirement for

maximum augmentation capability, so the decrease in maximum augmentation ratio

required by this concept will result in no decrease in aircraft operational

capability.

The placement of the flameholders in line with the mixer trailing edge results

in approximately 2.9 inches greater penetration than the baseline design and

should thus increase the mixing effectiveness. The wakes of the flamehol_eFs

will provide an immediate mixing mechanism at the trailing edge of the

flameholder due to the entrainment of both hot and cold gases. There is some

concern, however, that the presence of the flameholders at the t_ailing edge

of the mixer will decrease the size and strength of the vortices formed b/ the

secondary flows and thus decrease the mixing due to that mechanism.

The fuel system is incorporated into the mixer walls to lower the pressuT'e

loss. The spraybars each inject fuel into both hot and cold streams in order

to completely fill the flameholder wakes with a flammable mixture. This fuel

injector design is different from the baseline design and will result in
radial zoning with both hot and cold streams being fueled simultaneously.

This compares to the baseline design which will fuel the core stream first, as

the flameholders do not touch the fan stream at all.

The effect of both the re_x)val of the cooling liner and the incorporation of

the radial spraybars into the mixer wall will be to reduce the pressure loss

of the system at all operating points. This will reduce TSFC at cruise

conditions. The placement of the flameholders in line with the mixer wall

provides for signiflcantly greater penetration to aid the mixing.

F. Candidate Flameholder Aerodynamic Design

The initial or baseline flameholder design is a 14 lobed configuration with

very little fan valley (bypass flow) penetration and very high flow blockage.
This iS mainly due to the location and number of V-gutters in the flow fie!d.

With the additional problem of analytically simulating their midlobe

obstruction, it was jointly agreed that the alternate lobed flameholdeF

configuration be approved for more detailed aerodynamic design and subsequent

fabrication and testing.
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The design of the final flameholder configuration was obtained modifying the
design shown in Figure 7 to increase its duct comn_naiity with the SWIXER
installation, thereby focusing al] analytical and experimenta] efforts only on
the lobe shape and lobe number differences. The blockage effects of the

V-gutters against the lobe side wails was assumed minimal and then therefore

was neglected. The flow area distributions obtained using the SWIXER duct

contours were then found to be with acceptable tolerances. A comparison of the

revised design characteristics of the final f]ameho]der mixer with improved on
final SWIXER design is shown in Table III.

Lobes

Pilot

V/Gutters

Penetration (Outer Wail)

L/D

Nozzle Exit Sta.

Lobe Shape

Fuel Injection

Primary Gap

Flow Path Turning

Coo1 ing

TABLE III

OVERVIEW OF REVISED

PRE-MIXER CHARACTERISTICS

F]ameho]der Mixer
SWIXER Final Final

12 6

Yes No

No Side Wall, 2/lobe

64% 87.6
88% (Pilot)

].25 (within Pilot) 2.0

93.177 ]22

Radial Radia7 Nails
No Sharp Corners Sharp Corners

Fan & Primary Radial Radia]- Walls

Small Large

Moderate Fan = Reverse Turn

Pri = Severe Turn

Liner 2.6% Engine Flow Insulation
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Ill. DESIGN OF PLANAR MIXER CONFIGURATIONS

The two augmentor concept designs were modified in the previous section to

reflect performance improvements identified using an empirically based design

system. In a previous program (Ref. 3), detailed experimental data obtained

for a JTBD-209 mixer installation indicated that the effect of total

temperature ratio of the inlet streams can be effectively removed from the

problem and that mixing effects can be considered in terms of total pressure
differences alone. This simplification enables one to test using a cold flow

facility to simulate real mixing effects.

"Planar" configurations refer to mixer lobes that are spanwise periodic but

collapse to a flat plate at some upstream location. Planar configuration
cannot be developed from most design systems derived only for "axisymmetric"

or engine type applications. A geometrically "planar" analog to the

axisymmetric augmentor can be obtained using the FLOMIX input preprocessor
(Ref.4) while constraining several geometrical parameters to be constant. This

is consistant with the design philosophy used in the axisymmetric for engine

based mixer design system. The specific procedure followed was"

I) Increasing Rm and the number of lobes proportionately so that

Rm/L_ I produces a planar surface with the same lobe width X,

i.e.

2)

X = 2 _(Rm/N_ob,)

Maintaining the lobe turning angle, (Lm/h), implicitly maintains

the lobe aspect ratio

3)

AR

h \ NLo:, h

The lobe penetration, P = A,,/Aou:,, is implicitly maintained by

maintaining the prlmary and bypass "flow" areas, i.e.

ARm = constant "" RNozZl,

Ac,.,,_:ody = constant --- R=,.:.,oooy

The planar equivalent of the SWIXER and flameholder mixer configurations were
then scaled to fit in the UTRC planar wind tunnel with an even number of mixer

lobes. A description of this wind tunnel is provided in Part I of this report

series. A comparison of these two planar lobes at the trailing edge plane

demonstrates that two SWIXER lobes evenly fit within the gap of one

flameholder lobe. Figure 8 illustrates the fabrlcated SWIXER lobe with a

simulated turning vane in the UTRC test facility while Figures 9 and lO shows

two uninstalled views of the fabricated flameholder design.
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Flgure 8 Installed View of SWIXER With Vane in Planar Wind Tunnel
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Figure 9 Downstream View of Flameholder M_xer Assembly
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IV. EXPERIMENTAL ASSESSMENT OF SWIXER DESIGN

A comprehensive experimental study of the SWIXER configuration without vanes

installed is reported in Part I of this report series under the model

designation, "Advanced High Penetration Mixer" A limited experimental assess-

ment of the SWIXER configuration (vanes installed) was conducted using flow

visualization and laser Doppler veloclmetry (LDV) techniques similar to those

reported In Part I. A limited assessment was conducted since surface flow
vlsualization on the lobe surfaces showed no appreciable changes due to

introduction of the vanes. Furthermore, the vane position in the center of the

fan trough would not be expected to interfere with secondary flow cells which

center on the dividing surface between the troughs and peaks, i.e. the plane

of the vane represents a plane of symmetry.

To further identify the general similarity of flow patterns, the spanwise

secondary flow component was measured" with a LDV at an axial location

(X : O.O5)" just downstream of the vanes. This pattern is shown in a

contour plot format in Figure II. A corresponding plot for the configuration

without vanes is shown in Figure 12. The latter data were obtained at an axial

location (X = 0.05) downstream of the lobe trailing edge, and hence in

physical location, x = 3.75 upstream of the survey with vanes.

A detailed discussion of the results shown in Figure 12 for the model without

vanes is provided in Part I. It was concluded that the opposite directed

components in the vicinity of the vertical lobe surfaces was due to flow

filling in the wake of blunt-based 0.060 thick lobe trailing edge. This is a

localized event which would not be expected to persist in the vane

configuration survey due to wake mixing. As shown in Figure II, these

cross-stream flows are not observed at the vane exit station. Instead, Figure

12 for the SWIXER, shows a corresponding cross-flow pattern at the vane

trailing edge due to the same wake-filling mechanism. Excluding these
localized trailing edge wake patterns, the cross-flow components for the two

configurations are similar and generally of low magnitude. From these results

as well as the improved understanding of mixer lobe secondary flow generation

presented in Part I, it Is concluded that SWIXER configurations at zero vane

angle can be analyzed using the same basic methods developed for non-vane

configurations. Specifically, the secondary flow circulations responsible for

downstream mixing should scale with geometrical parameters in the manner

described In Part I.

"LDV survey data for SWIXER with and without vane are presented in Appendix

A and B, respectively.

" All coordinates consistent with Part I definitions have been normalized by

the lobe half width.
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APPENDIX A

SWIXERWITHOt_VANE LOBED MIXER (w/U=)

Normalized Spanwise Velocity LV Data

Axial Location X - 0.05

Z (IN)

(IN)

0.07 0.17 0.27 0.37
0.47

1.40 0.0028 0.0157 0.0233 0.0271 0.0285

1.30 0.0001 0.0158 0.0271 0.0375 0.0349

1.20 -0.0089 -0.0079 -0.0251 0.0323 0.0370

i.i0 -0.0097 0.0159 0.0660 0.2186 0.0048

1.00 -0.0057 0.0088 0.0469 0.1004 -0.1818

0.90 -0.0050 0.0172 0.0346 0.0771 0.1912

0.80 -0.0016 0.0180 0.0345 0.0737 0.1745

0.70 0.0026 0.0185 0.0318 0.0614 0.1453

0.60 -0.0011 0.0120 0.0268 0.0657 0.1454

0.50 -0.0017 0.0157 0.0243 0.0527 0.1344

0.40 -0.0026 0.0138 0.0251 0.0606 0.1571

0.30 -0.0028 0.0157 0.0231 0.0549 0.1478

0.20 -0.0008 0.0151 0.0253 0.0614 0.1574

0.10 -0.0004 0.0121 0.0256 0.0641 0.1453

0.00 0.0002 0.0146 0.0292 0.0654 0.1066

-0.10 -0.0033 0.0143 0.0253 0.0654 0.1589

-0.20 -0.0027 0.0086 0.0222 0.0525 0.1471

-0.30 -0.0027 0.0116 0.0201 0.0580 0.1609

-0.40 -0.0034 0.0057 0.0173 0.0491 0.1069

-0.50 -0.0072 0.0050 0.0094 0.0513 0.1795

-0.60 -0.0031 -0.0010 0.0037 0.0336 0.1305

-0.70 -0.0108 -0.0057 -0.0061 0.0220 0.1056

-0.80 -0.0157 -0.0124 -0.0150 -0.0065 0.0295

-0.90 -0.0179 -0.0230 -0.0271 -0.0373 -0.0594

-1.00 -0.0174 -0.0323 -0.0423 -0.0528 -0.0751

-I.i0 -0.0215 -0.0357 -0.0506 -0.0647 -0.0853

-1.20 -0.0228 -0.0498 -0.0574 -0.0734 -0.0807

-1.30 -0.0355 -0.0578 -0.0655 -0.0804 -0.0912
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SWIXER WITHOUT VANE LOBED MIXER (w/U=)

Normalized Spanwise Velocity LV Data

Axial Location X - 0.05

Z (IN) 0.57

J Y (IN)

0.67 0.77 0.87 0.97

1 1.40 0.0171 0.0142 0.0080 -0.0019 -0.0056

2 1.30 0.0253 0.0231 0.0153 0.0012 -0.0070

3 1.20 0.0271 0.0217 0.0165 0.0079 -0.0004

4 i.I0 0.0230 0.0176 0.0168 0.0093 0.0035

5 1.00 0.0032 0.0097 0.0122 0.0100 0.0029

6 0.90 -0.0302 -0.0022 0.0072 0.0028 0.0020

7 0.80 -0.0662 -0.0247 -0.0034 0.0028 0.0033

8 0.70 -0.0917 -0.0360 -0.0133 -0.0007 0.0018

9 0.60 -0.1084 -0.0468 -0.0180 -0.0063 0.0002

i0 0.50 -0.1207 -0.0496 -0.0226 -0.0088 -0.0004

ii 0.40 -0.1236 -0.0515 -0.0241 -0.0104 -0.0015

12 0.30 -0.1243 -0.0544 -0.0270 -0.0122 -0.0031

13 0.20 -0.1193 -0.0518 -0.0291 -0.0124 -0.0029

14 0.10 -0.1064 -0.0517 -0.0277 -0.0180 -0.0016

15 0.00 -0.1158 -0.0560 -0.0300 -0.0157 -0.0031

16 -0.I0 -0.1198 -0.0588 -0.0288 -0.0153 -0.0021

17 -0.20 -0.1114 -0.0647 -0.0290 -0.0186 -0.0006

18 -0.30 -0.1131 -0'0619 -0.0312 -0.0194 -0.0031

19 -0.40 -0.1093 -0.0621 -0.0330 -0.0190 -0.0025

20 -0.50 -0.1151 -0.0619 -0.0316 -0.0191 -0.0055

21 -0.60 -0.1132 -0.0562 -0.0319 -0.0193 -0.0031

22 -0.70 -0.0997 -0.0518 -0.0316 -0.0244 -0.0061

23 -0.80 -0.0962 -0.0548 -0.0333 -0.0247 -0.0101
24 -0.90 -0.0753 -0.0574 -0.0317 -0.0229 -0.0039

25 -1.00 -0.0460 -0.0564 -0.0428 -0.0173 -0.0193

26 -I.I0 -0.1147 -0.1478 -0.0599 -0.0321 -0.0349

27-1.20 -0.0890 -0.0998 -0.0978 -0.2672 -0.2096

28 -1.30 -0.0865 -0.0910 -0.0675 -0.0308 -0.0186
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APPENDIX B

SWIXERWITHVANE LOBED MIXER (w/U=)

Normalized Spanwise Velocity 5V Data

Axial Location X - 0.05

J Y

1 1.50

2 1.30

3 1.10

4 0.90

5 0.70

6 0.50

7 0.30

8 0.I0

9 -0.i0

10 -0.30

Ii -0.50

12 -0.70

13 -0.90

14 -i.i0

15 -1.30

Z 0.03 0.13 0.23 0.33
0.43 0.53

-0.0597 -0.0472 -0.0318 -0.0143 -0.0112 -0.0093

-0.0413 -0.0290 -0.0023 0.0159 0.0258 0.0259

-0.0405 -0.0207 0.0013 0.0326 0.0323 0.0453

-0.0245 -0.0086 0.0001 0.0008 0.0137 0.0371
0.0068 0.0184 0.0172 0.0332

-0.0164 -0.0103 0.0009 0.0121 0.0090 0.0137

-0.0200 -0.0115 0.0012 0.0002 -0.0037 0.0051

-0.0192 -0.0120 -0.0087 -0.0033 -0.0065 -0.0021

-0.0193 -0.0101 -0.0118 -0.0030 0.0024 0.0017

-0.0198 -0.0139 -0.0141 -0.0079 -0.0084 -0.0106

-0.0185 -0.0119 -0.0096 -0.0041 -0.0054 -0.0139

-0.0205 -0.0208 -0.0178 -0.0137 -0.0127 -0.0157

-0.0199 -0.0263 -0.0249 -0.0482 -0.0218

-0.0214 -0.0220 -0.0324 -0.0489 -0.0563 -0.0491

-0.0129 -0.0253 -0.0396 -0.0666 -0.0906 -0.0866

J Y

Z 0.63 0.73 0.83 0.93

1 1.50 -0.0051 0.0107 0.0145 -0.0504

2 1.30 0.0293 0.0540 0.0687 0.0580

3 i.I0 0.0619 0.0723 0.0846 0.0740

4 0.90 0.0626 0.0893 0.0942 0.0761

5 0.70 0.0412 0.0869 0.0936 0.0837

6 0.50 0.0126 0.0772 0.0867 0.0648

7 0.30 0.0181 0.0734 0.0775 0.0541

8 0.10 0.0055 0.0735 0.0742 0.0471

9 -0.10 -0.0061 0.0668 0.0733 0.0378

10 -0.30 -0.0048 0.0550 0.0690 -0.0642

ii -0.50 -0.0135 0.0558 0.0645 -0.0568

12 -0.70 -0.0016 0.0520 0.0611 -0.0563

13 -0.90 -0.0089 0.0472 0.0509 -0.0633

14 -1.10 -0.0273 0.0313 0.0460 -0.0375

15 -1.30 -0.0512 0.0263 0.0414 -0.0056
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